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RESEARCH MEMORANDUM

THEORETICAL AND EXPERTMENTAL INVESTIGATION OF THE
EFFECT OF YAW ON HEAT TRANSFER TO CIRCULAR
CYLINDERS IN HYPERSONIC FLOW

By A. J. Eggers, Jr., C. Frederick Hansen,
and Bernerd E. Cunningham

SUMMARY

An approximate theory is developed for predicting the rate of heat
transfer to the stagnation region of blunt bodies in hypersonic flight.
Attention is focused on the case where wall temperature i1s small compared
to stagnetion temperature. The effect of yaw on heat transfer to a cylin-
drical stagnation reglon is treated at some length, and it is predicted
that large yaw should csuse sizable reductions in heat-transfer rate.

Experiments were conducted in a so-called hypersonic gun tunnel to
obtain a preliminary check on this theoretical prediction. These experi-
ments consisted of meassuring the rate of heat transfer to circular cylin-
ders in a hypersonic sir stream of nominal Mach number, 9.8, and nominal
stagnation temperature, 2200° R. Experiment tended to confirm theory,
showing, for example, that a 60-percent reduction in average heat-transfer
rate can be obtained by yawing a circular cy}aner TOC to the air stream.

INTRODUCTION -

It has been suggested (see refs. 1 and 2) that blunting or rounding
the leading edges of wings and bodies might substantially alleviate aero-
dynamic heating of these regions in hypersonic flight. There is, of °
course, the added advantage that round leading edges are structurally
more practical than sharp leading edges, especially when the problem of .
absorbing heat ie considered. Another consequence of round leading edges
may be increased pressure drag. In the case of ballistic vehicles, this
consequence is often an advantage (see ref. 1). In the case of glide
vehicles, however, or more generally any vehicles required to operate for .
sustained periods in more or less level hypersonic flight, increased drag *
would most likely be viewed as a disadvantage.

Vi
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Now, to be sure, rounding or blunting the nose of a body does not
alweys increase drag. Indeed, small amounts of blunting may reduce the
drag of a body (see, e.g., refs. 3 and 4). The same, however, cannot be
sald for blunting the leading edge of a wing. Even small blunting causes
& slzeble increase in drag. It is natural, then, to look for methods of
minimizing thie drag penalty, and the possibility of yawing or sweeping
the leadling edge comes to mind. Impact pressures should be, according to
simple-sweep theory, decreased in proportion to the cosine squared of the
angle of sweep; hence, as is intuitively obvious, large sweep should sub-
stantially reduce the drag penalty due to blunting. In view of this pos~
81bllity 1t is important to inquire of the effect of yaw or sweep on heat
transfer to a blunt leadlng edge. . . .

A theoretical study of this effect was therefore underteken, and the
predictions of the theory were checked ageinst the results of experiments
carried out in a hot hypersonic air stream. The purpose of this report oo
is to describe the problems and results of both the theoretical and experi-
mental research.

L

SYMBOLS
A,B,C,
D,E,F, integration constants - : : _ R
G, ..
Cy specific heat of body material, ft~1b/slug °R
Cp specific heat at constant pressure, ft-1b/slug °R -
Dy 2Ry, twice the radius of curvaeture of the body at the stagnation
point, ft .
[ pat iy " R
£1(%) TOEEIO) parameter of time, sec =
L: pidt
£o(t) o parameter of time, sec .
B reservolr pressure, lb/ft2 (unless otherwise specified)
h specific enthalpy, £t-1b/slug _
k coefficient of thermal conductivity, f£t-1b/ft-sec °R
X ratio of static pressure to pitot pressure, dimensionless

TR | -
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M

n

Nu

Mach number, dimensionless

exponent of temperature in thermsl conductivity and viscosity
functions (see egs. (37) and (38)), dimensionless

Nusselt number based on & length D, and stagnation temperature
conditions, dimensionless

statlc pressure, lb/ft2 (unless otherwise specified)
pitot pressure, 1b/ft2 (unless otherwise specified)
Prandtl number, dimensionless

dynamic pressure, 1b/ft%

gas constant, ft-1b/slug °R

radius of curvature of body at the stagnation polnt, £t

radius of curvature of the shock wave at the stagnation stream-
line, £t

Reynolds number, based on twice the radius of curvature of the
body at the stagnation point, dimensionless

spherical coordinates, feet, degrees, and degrees, respectively
static temperature, °r

temperature of the body, °Rr

temperature at the interface, x 0, with body at zero yaw, °rR

temperature at the interface, x.= 0, with body at angle of yaw A,

°Rr
recovery <temperature, °r
stagnation temperature, °r
stream velocity, £t/sec

velocity components in the x,y, and z directlons, respectively,
ft/sec

velocity components in the x and r directions, respectively,
Pt/sec

iy
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Cartesian coordinates, £t
cylindrical coordinates, £t

flow deflection angle, deg -

dimensionless coordinate, E—éjﬁl or Ehﬁiji
b

ratio of specific. heat at constant pressure to specific heat st
constant volume, dimensionless

Y 7+1

(%i) <?£?{> » 8 function of 7, dimensionless

angle of yaw, deg s

density, slugs/cu £t

density of the body material, slugs/cu £t

T : -

JF k 4T, a function of the coefficient of thermal conductivity
o

and of temperature, ft—lb/ft-sec (unless otherwise specified)

acute angle of shock wave relative to stream velocity vector, deg
coefficlent of viscosity, slugs/ft sec

coefficlent of viscosity at temperature Tq, slugs/ft sec
coefficlent of viscosity at temperature TO(K), slugs/ft sec

time constant, sec

Subscripts e

conditions Jjust behind shock weve on the stagnation streamline

conditions at the stagnatlion point of the body

conditions at the interface between regions 1 and 2 on the stag-
nation streamline (see sketch (a))

condltions in the free stream

SRR DR 2
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Superscripts

' first derivative with respect to the x coordinate

second derivative with respect to the x coordinate

THEORY

General Equations in Cartesian Coordinates

The analysis proceeds from the equations of momentum, continuity,
energy, and state for continuum £luid flow. The x, y, end z momentum
equations are, respectively,

du a_u du au__éa_éi< éz)
+ v +W'> 33}{[ &+ +

Pzt Sy dz) ox T S
R IECEE
%[u(%uz-+gﬁx] | (1)
ool Boogog)-- 215 E 2 )
ay( > [ §;>j|+
HEEEH)
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dw dw dv.. . dw =_§g_g_g[ du , dv BWH
at+p<u&-+vay+w$> 3z 30z "\& © By Oz ¥

9 dw o) du , Ow

282 u8z>+§§[u$+8x>]+

SGp)]

The continuity equation is

%, 3 E-R S (ow) = 1
$2+ (o) + o) + Sow) = 0 ()
and the energy equation is
, b __ op ap
6 + vV = B > < u + v By +

SRICR G RIORIOR
TR T I IR

while the equation of state is taken in the form’

p = p(p,T) | (6)

CONBRETITT -
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Derivations of the momentum and .energy equations are given in numerous
sources (see, e.g., refs. 5, 6, and 7). Note that the coefficients of
viscosity and thermsl conductivity, and the heat capacity have been
treated as variables. It is intended that by so doing a more accurate
solution will be obtained for hypersonlic flows with their charascteristi-
cally large temperature and pressure gradients.

Let us now consider the particular flows of interest in this psper,
namely, those in the region of a stagnation point.

Model of Flow and Method of Analysis

It is instructive in setting up the model to consider the qualitative
aspects of temperature and velocity variations in the flow along the stag-
nation streamline. Restricting the analysis to steady hypersonic flow,
that is Mysin & >>1, we will assume that the surface temperature is low
corpared to the stagnation tempersture of the air. This sssumption seems
quite ressonsble since practical surface materials will probsably be
destroyed if surface temperatures are allowed to approach stesgnation
temperature. It will be assumed further that the Reynolds number of the
flow is large enough so that heat conduction and viscous shearing in the
shock process is distinct and separate from the corresponding phencmena
occurring in the boundary leyer adjacent to the surface of the body.
Accordingly, temperature and veloclty should very along the stagnation
streamline similar to the menner shown in sketch (a).

Upymrmmrmre e —m e

@ i
1
[
Ts -1
Temperature
ug = /Veloclty
“~
~
To S~ ~—
Shock Body
wave surface
Sketch (a)
IS

'lIll!mmaq..
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There is an abrupt and large increase in temperature and decrease in _
velocity of the air as it passes through the bow shock. Proceeding from

1l

the shock in the direction of the body, temperature continues to increase _' 'S :

slowly while the velocity decreases slowly towards zero. Near the surface

of the body, the air temperature ceases to increase and, in fact, begins .

to fall off steeply in the direction of the body temperature. The veloc- T
ity of the flow must, of course, be close to zéro in this region.

On the basis of these observations the following simplified model is
propoged and employed throughout this study of heat transfer in a stagna-
tion region.

Region | v,y Region 2
 §
Stagnation
streamline ! N
U -

~Xg ° u, x
Detached Interface ///

shock wave between regions
land 2

Region |— Incompressible, nonviscous flow

Region 2— Low-velocity, compressible, viscous fiow

Sketch (b)

Since M, 1is large compared to 1, Mg is substantially less than 1 and
the detached shock wave is located a relatively short distance ahead of
the body surface (i.e., (xg + x)/Rp < <1). The flow between the shock
wave and the body surface is divided into two regions. Region 1 is teken
as a domein of essentiaslly nonviscous, non-hegt-conducting, incompressible
flow while region 2 is taken as a domain of very low speed, but compres-
sible, viscous, and hegt-conducting flow. It is .anticipated further that
in region 2 the u and v components of velocity will be very smell. The
component of velocity w due to yaw may, of course, take on rather large
values. .

Now it mey be demonstrated with equations (l) and (2) that 2 /By

re———
g



NACA RM A55EQ2 Nl 9

the limit as the disturbed flow extends only a short distance away from
the body. Inasmuch as this is the type of flow of interest here, it will
be assumed throughout this analysis that 32p/dy® is essentially con-
stant along the stagnation streamline between the shock and the body.

With these assumptions, the derivative with respect to y of the
Yy momentum equation yilelds a differentlial equation that becomes tractable,
both in regions 1 and 2, when terms that vanish in the neighborhood of the
stagnetion streamline are dropped. Approximate solutions to these simpli-
fied y momentum equations are found for the u veloecity along the stag-
nation streamline in region 1, and for the derivative of this wveloecity
along the stagnation streamline in region 2. The constants sppearing in
these solutions are determined by matching the boundary conditions at the
shock wave and at the surface of the body, and by matching flow conditions
at the interface. This procedure fixes the locations of the shock wave
and interface relative to the body.

The energy equation is simplified in an anslogous manner, and solu-
tions valid in the neighborhood of the stagnation stresmline are found
for regions 1 and 2. The rate of heat transfer per unit srea to the
stagnation region of the body follows from the solution to the energy
equation for region 2.

Let us see how these thoughts apply in the case of a two-dimensionsl
stagnation region.

Heat Transfer to s Cylindrical Stagnation Region

Zero yaw.- This problem has been treated for incompressible flow by
Howarth (ref. 7) and more recently for the compressible flow by Cohen
and Reshotko (ref. 8). One reason for re~-investigating the matter here
is to obtain compressible flow solutlions which can be extended with rela-
tive ease to the case of g yawed cylinder. In addition it was desired
to obtain solutions which may be better suited to account for real gas
effects, such as dissociation.

To proceed, then, the stagnation streamlines are teken to lie in the )
x-z plane. The origin of the coordinate system is at the interface -
between regions 1 and 2, and the shock-wave and body-surface locations in
this plane are xg and x},, respectively (see sketch (a)). For the case
of zero yaw, the z component of velocity and s8ll derivatives with
respect to z are, of course, identically =zero.

First a solution will be found to the steady-state y momentum

equation near the stagnation streamline in region 1. Since the flow is
assumed incompressible and nonviscous in this region, equation (2)

D -
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simplifies to

w4y ¥ - . % g% (7)

Differentiating equation (7) with respect to y +there is obtained

LAWY, udv, (o Bv 13
()R Y o ©)

On the stagnation streamline v is 1dentically zero aﬁd therefore, av/ax
is also zero. In addition, the continuity equation (eq. (4)) becomes, for
incompressible, two-dimensional flow

Bu oV _

ol o . (9)

Using this information with equation (8), one obtains

10
u—+< -é% (lO)

Treating Bap/ayz as a function of ¥y onl§; and noting that eqpation;(ldj
becomes a total differential equation along & line y = constent, yields a
general solution for velocity along the staghation streamline

w = A% 4 Be-cx' o (11)

vwhere the constants A, B, and C are relasted by

yapc2 = L 02 (12)
o] a 2 —

Note that the constants may be real or imaginary, depending on the bound-
ary conditions.
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Now it is anticipated that the velocity u will very nearly vanish
at the interface x = Q (i.e., in the sense that uo/us << 1l); hence B
will be approximately -A, and the corresponding approximate solution for
velocity ist

u = 2A sinh Cx (13)

To the same order of approximation, the second derivative of velocity at
the interface, uy", also vanishes. The product 2AC is just the veloclty
derivetive at the interface and can be evalusted from equations (10)

and (13), thus

2
PAC = ug! = [- 2 2B (14)

Note that the negative root correctly describes the flow in the coordi-
nate system of sketch (b), since velocity decreases with increasing x.

Consider next the steady-state y momentum equation near the stagna-
tion streamline in region 2. In this domain viscous terms must, of course,
be retained and thus the derivative of equstion (2) with respect to ¥
yields

Pv, e, dwdw, v, v, a_v>

—+ ———
a3y Yy ox Paxmoy a2 avey  S\&
P o l: du 3V> d2 ( ov d* o)
= o —— 2 = 4 = 2 =2 du , ov
32 3052 L° 3 T 3y, :l+ 32 u5y>+8y5:C[u 5y+BX>] (15)

Now close to the surface of the body the left-hand side of this expres-
sion is negligible and the right-hand side simplifies so that the equa-
tion may be written (see Appendix A)

(B _ 2

o P 5.2 =-ay2 (16)

1Tn the limit of zero boundary-layer thickness, this solution is
exactly the one to which equation (11) reduces.
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Along the stagnation streamline this equation integrates to

% 3
W T, (17)
ox oy
2 .
The constent D is zero since O u/dx = u," = O &t the interface (x = 0).

Near the surface of the body, equation (17) can be integrated to obtain
I—L—'=‘——'X_+M01}:o' (18)

In order to satisfy the boundary condition at the body surface

g—"> = @—)‘D = 0, it follows from equations (18) and (14) that
Y. b

2 = D ) (19)
Now p and sz/ay2 can be evalusted at the shock wave since both are

consldered constant throughout region 1. In Appendix B it is demonstrated
that for two-dimensional flow ' -

= 2
%r=/s (74 - LR, |

where Rg 18 the radius of curvature of the ‘shock wave in the stagnation
region. Substituting equation (20) in equation (19) we obtain

= _ (....___75 - >1/4 (‘:‘.9. Bg\'/2 -2 _ (21)
Rp 6 Heo Rp Remlla

where Rey, 18 the free-stream Reynolds numbét based on Dy, twlce the
radius of curvature of the body at the stagnstion point. Note also that
the effective value of 7, the retlio of specific heats, at the shock wave
is allowed to vary from the free-stream value. In this way, changes in
internal molecular energy which are manifest at the high temperatures
encountered in hypersonic flight can be considered.

[retEE e
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There remains the problem of solving the energy equation. In
region 1, the energy equation is simplified by neglecting all the viscous
and heat-conduction terms. Then, for the two-dimensional problem con-
sidered here, equation (5) reduces to

Ju oT

u—+Cy,==0 a2
ox P dx (22)
for which the solution is
Ty
¢ ar = 45 (23)
o T

It can be geen from equation (23) that the interface temperature T, 1is
spproximately the stagnation temperature Ty, since the velocity at the
interface nearly vanishes. The stagnation temperature is, of course,
given by the integral eguation

Ty 2
Yoo LMoo
fT Cpdl = ——5—— (&%)

=]

where for very high velocity flow the lower limit of the integral will be
neglected.

Next consider the energy equation in region 2. Proceeding in a man-
ner anslogous to that used in studying the y momentum equation in this
region, we neglect the terms with the factors wu, v, du/d3x, and dv/dy.
Thus equation (5) becomes simply the heat-conduction equation

O /3, d (2
ax<k&>+§§ ESE)=o0 (25)

The coefficient of thermal conductivity, k, is considered & known function
of tempersture (pressure is essentislly constant). Thus & new function of
temperature, 7, may be defined such that

T

n=f k 4T (26)

o}

Then equation (25) may be expressed in terms of the function 17

3 3% '
i § =0 2
52t 552 (27)
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Inesmuch as the body boundary is cylindrical, it is convenlent to use the
general solution to egquation (27) in terms &f the polar coordinstes (%, 6).
Thus - '

o0 .
n=A+Blnf+z [(Cnfn+2n— cos ne+<Enf'n+F—n>sinn9:|
n=1 fn fn

(28)

The origin of the coordinate system is now taken as the center of curve-
ture of the body, and 6 as the acute angle between the radius vector 2
and the stagnetion streagline. If a surface tempersture is assumed inde-
pendent of the angle 6,  the solution on the stagnation streamline (6= 0)
reduces to

- = n ) R 21
n=nb+Bln§I:g+Z Cu? l:l- ?b> } (29)
n=1

Letting éi =1+ €, where ¢ 1s very small cémpared to unity, and

expanding equation (29) in a series of ascending powers of €, we obtain

n=nb+G< -§>+0(é3) (30)

ol . - _— e
where G 1s the constant C%.FEZ 2nRg1C%>- It is indicated by this

n=1
equation that 1n wvaries essentlally linearly with €, since 62/2 is
negligible compared to € and terms of higher order in € should be
very smell indeed.® Since e = (x, - x)/Ry, < <1, equation (30) can be
written

n=1 - (ng-1) % (31)

2The dependence of surface temperature on 6 should be small in the
stagnation region.

31t should be pointed out that this argument hinges implicitly on
the assumption that . is & weak function of @ near the stagnation
streamline.
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According to this expression, the rate of heat transfer per unit area to
the stagnation region of the body is

To

] r-h;_"h_é_f
M =2 = n k dT (32)

The stegnation-line coordinate xp 1is substituted from equation (21),
and the rate of heat transfer becomes

' = [5(_75—3_-_3)_:‘114 (ﬁo Rs>

A Kusselt number is defined for interface temperature conditions
using a characteristic length equal to twice the radius of curvature of
the body and a temperature potential of (To - Tb); thus

/2 To

Rey, 1/2 .
f k 4T (33)
Ty

ko(To = Tb)

or, substituting from equstion (33) into (34)-

1/ 4 i/z2 1/2
ne () @R Taa
Fo Re/  Tko(Ty - To)

For a relatively cool body in hypersonic flight, it is possible to dis-
regard the lower limit of the integral and the velue of body tempers-
ture Ty compared to the interface temperature T,.

Note that the solutions given by equations (33) and (35) can be used
for the case where viscosity, thermal conductivity, and specific heat are
arbitrary functions of temperature. For instance, these functions can be
calculated to include the effects of vibrational and dissociational molec-
ular energy if the extent to which these energy modes are excited is known
throughout the flow. It is sufficient for the most part in this paper to
consider the gpecific heat a constant and the viscosity and thermal

=R
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conductivity as proportional to the nth power of temperature.

cese from equation (24) ( note L. 1, Toss
Ty Tco

To _ (22
T_"<20P>M°°

o]

Noting that

NACA RM A55E02

In this

(36)

i (Tb /To>n+l

To n
S S -1 T _ 1
ko(To - Tp) “/f;b . To - Tp j;“o <To> ®aa

and that

n/2

Moo-n

ERORE

1t is seen that the expression for Nusselt mumber (eq. (35))

Mu =

i/z 1 - <?b/T >n+l N

1 - T /T,

(37)

(38)

becomes

n+l <—T>1/4(—>1/2 <—(‘%>n/:z Re,, <

1-(Ty,/T,)

and the rate of heat transfer per unit area to the stagnation region of

the body is, in terms of free-stream conditions,

B <k°ri':°°> [8(7:; 1)}1/4E @—Z)l/Z(ch)_ﬂ Z +M:n+

These considerstions complete the zero-yaw analysis.

L@ ]

1

(%0)

However, before

undertaking the study of effects of yaw on heat transfer it is sppropriate

to make a few remarks.

By way of introduction it should be pointed out

that & procedure quite analogous to that just described for treating a
cylindrical stagnation region can be employed to treat an axislly symmetric
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stagnation region. The results of such an analysis are presented in
Appendix C. There 1s then the general question of the legitimacy of the
several assumptlions underlying the present treatment of stagnation-point
flows. In order to shed some light on this matter it was undertaken in
Appendix D to examine the solutions obtained to see whether they are con-
sistent with these assumptions and with pertinent resulits obtained by
others. In this regard it is shown that the presumption of & constant
second derivative of pressure normal to the stagnation streamline yilelds
solutions for the distance between shock wave and body which are quite
close to observed values. Next, it is demonstrated that, as assumed, the
velocity u is negligibly small throughout reglon 2 under continuum flow
conditions. Then it is shown that the largest of the viscous dissipation
terms neglected in the energy equation for region 2 is indeed small com-
pared to the hest-conduction terms. It 1s found too that the analysis
predicts an smount of heat convected into region 2 which is the proper
order of maegnitude to account for the heat transferred to the body.
Finally, it is shown that under comparable conditions equation (35) of
thisspaper predicts essentially the same heat transfer as references T
and O.

In view of these results it would seem that the simplified analysis
presented here for stagnation-region flows is, while on the one hand cer-
tainly spproximate, on the other hand quite capable of predicting useful
Information. Accordingly, we proceed to the study of effects of yaw on
heat transfer.

Yaw.- In this case the x direction is normsl to and the z direc-
tion Is parallel to the stagnation line of the body (see plan view,
sketch (c)). Then the =z component of velocity has a finite value, but
all z derivatives are again zero.

Region | &
u.X
6 ?
oo’ \ %’.
VP 2 Body
A v d stagnation~
Uo o Detached i
shock wave
Interface
between
regions | and 2
(x =0)
Region |~ Incompressible, nonviscous flow

Region 2— Compressible, viscous flow

Sketch (c)
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The y momentum equation in region 1, differentiated with respect
to y, takes the same form as equation (10) on the stagnstion streamline.
Thus the veloclity u 1s again given by the solution

L T 82 _ - .
u=-—c-/--b-g—yg-sinh0x (Ll-l)

The 2z momentum equation for the stagnation stresmline in region 1
becomes, on dropping the negligible terms from equation (3),

ow

w0 (42)
ox
which has the solution
w? = 7 RT M Zsin®) (43)

since the transverse component of veloecity is unchanged on passing through
the shock wave. :

The energy equation for the stagnation streamline in reglon 1 reduces
to a form similaer to equation (22)

BTV ox *Cp ox © (kek)

which has the solution

Ty 2 2 2
u® + 7 RT My, 8in<A
[ cpar - (45)
m .

2

where sgain the stagnation temperature Ty 1s given by equation (24).
At the interface where the velocity u 1s negligible, the temperature
To(A) is given by the solution to

T
© VR T, 25102
deT =

To(A) 2 (ke

ORI
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which, for a constant heat capacity, CP , is

To () oo
- (7% M_2cos@\ (u7)

The differentiated y momentum equation for region 2 takes on the
seme form on the stagnation streamline as equation (16). Hence, the

solution is
du _ _ 9% %2 _ [.1%%
P T T2 2 koM [ - 5 32 (L8)

and the body stagnation point coordinate is

2 2ua (A
[x,(A) 1% = _b(_; (1)
d°p
oy=
Now, however, the second derivative of pressure is a functlon of the
angle of yaw (see Appendix B),

< ﬁ _ Gpszmzcosz}\
ayz A = - (50)

(75 = l)Rsz

-p

so the stagnation-point coordinate 1s given by

Xb(')\) < - >1/4 <""o(7‘) Rg 1/2 5

(51)
Remllzcosl/a)\

In reglon 2, the solutions to the z momentum equatlon and the energy
equation are considered simultaneously. The =z momentum equation simpli-
fies (to the order of this analysis), in the reglon of the stagnation

streamline, to
—— —— —— —1
i > > + : (p. s =0 (52)

RS
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Similarly, the energy equation near the stagnetion streamline in region 2
may be written (note that Ow/dy is zero by symmetry)

9%q 9% <bu 2
2 TR T ax> =0 (53)

In order to facilitate the solution of equation (52), it is helpful
to observe that the yawed boundary layer, ldentified with the w compo-~
nent of velocity, resembles the boundary layer on & flat plate. It might
be anticipated then that, just as in the case of the flat plate, the
variation of w with x is relatively insensitive to variations of p
with x. In this event equation (52) has the approximste form

2 2 . .

The solution is teken in polar coordinates in order to conveniently f£it
the boundsry condition that w 1s identically zero at the body surface.
Then following the same arguments used in deriving equations (29) and (30),
one obtains on the stagnation streamline : -

Ww=3B1ln .1.;."; J:Z OpF™ {1 - (%)m] - i(e-%z->+0(es) (55}

where again €=(f/Rb)-l < <1l. If second order and higher terms in €
are neglected, the =z component of velocity on the stagnation streamline
becomes, in terms of x/xb,

W = Wo < - §%> (56)

whence . S ..

oW _ _¥g -
= (57)
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If this result i1s substituted for the last term in eqﬁation (53),
the energy equation becomes

o , 92 o) -
axz+ay2+u<—xé§> 0 (58)

A solution for equation (58) which satisfies symmetry conditions on the
stagnation streamline and also the boundary conditions that N1 and p are
constant along the surface of the body is

- o] 2n - - 2 .
0 wnsrw 2 o @ o B v
n=1 (59)

where | 1s a mean value of p in the stagnation region. If equa-

tion (59) is expanded in terms of e, 1 takes the following form on the
stagnation streamline

=2
1(0) =T]b+.J'< -Eé‘i) ﬂ<e+£,:- +0(e®) (60)

= 2
260

The constant J is evaluated by letting 1 be No When e 1is eo==xb/Rb
end is given by the relation

T]o - le < €p I:I.WOZ )
J = ——— - o o
- 1+ 2> + o~ (1 +¢g) + (61)

The rate of heat transfer per unit area to the stagnation region of the
body &t angle of yaw A is, from equation (60),

_ L (;_ B2
-5 .

Substituting equations (26) and (61) into this expression snd neglecting
terms of the order €y compared to 1, one obtains

AR
'™ = 26 (fmb cae S (63

L i S

i on(A) L _ 1 an(A)
ox
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Multiplying by —-(——h—~)— and subetituting from equation (51) yields
k (T, - T
b

_em ' (NR, ( >l/4 ( 2 pe 2 12
ko(To-Tb) Y - HolN) Rs ko (Tg - Ty)

fT oM de+p'
(6k)

For e constent heat capacity 1t follows from equations (23), (43),
and (47) that

T_(A)
?['o = cos®\
> (65)
'Wo2 >
—,i',-o- = ECPsin A J

If, in addition, the thermal conductivity is proportional to the nth
power of temperature, then

To(A) on+ n+1
S N _ cos 27\ - Ty,
ko(Ty - Tp) fT’b Sl (o + 1)(1 - Ty/To) [l (Tocosz7\> ]
(66)
and
Rwg2 _ __>Pr sin®\ _§p Pr cos™™\ sin®A (67)
2k (T, - Ty) o/ i-m/r Ho(N) 1 - my/1,
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Thus equation (64) becomes

2Ry _ 1 ( 6 >l/* (1}2)1’ 2 (gc_p n/2 pe 1/Z20ogh+1/2)
ko(Tg - T) n+1\Vs” Rg 7ol M (1 - T /T.)

. T OB 3
{cos A l:l g\rrr=ry :l+(n +l)Prm sin27\}
(68)

The ratio of equation (68) to equation (39) is the ratio of the rate
of heat transfer to the stagnation region of a yawed body to the rate of
heat transfer to the stagnation region of the same body at zero yaw. This
ratio is

n‘b 1 (-/\) _ c:os:n.+l/2?\ o n+i i
le'(o) = T (Tb/To)n+l {COS A [l - <ﬁj—:;b;zi> :I +(n+1)Pr u0(7\) sin2)\ }
(69)

An anslogous expression can be obtained for the ratio of Nusselt
numbers, thus, .

Na(A) _ mp'(A) <§_o>n To - Tp
r/ Tr

Fa(o)  my (o) s (70)

where from equetion (63) the recovery temperature, Tn, is the solution to

To(A) -
f Tkar-- m;°2 (12)
T,

However, it should be noted that the assumptions used in the analysis
tend to be violated when the body temperature approaches recovery condi-

tions. Therefore it should not be expected that equation (7T1) will yield
accurate values for recovery temperature.

QROIPIRINTAT
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There remeins, of course, the problem of determining H. It is suf-
ficient for the purposes of this report to take 1 as simply the arith-
metic average between po(A) and py, that is, n= [uo(k)+-ub]/2 In this
event equation (69) can be written

Tlblo‘) cosn+1/2K il
_ = {}oszk [ 2*) } - -
W (@) 1 - (mrg)e |
n2 [ <T — ] sin®A (72)
o

which in the case of a relatively cool surface (i. e., Ty /Tocos®A < < 1)
beconmes

(A
EE_S_l = cosn+l/2k <}oszk + atl Pr sin?#) (73)
™, ' () 2 |

These considerations complete the theoretical analysis. Attention
1s turned next to the experimental investigation.

EXPERIMENT

Test Apparatus _ . o es

In order to investigate hypersonic heat-transfer phenomens, it was
undertaken to develop an apparatus capable of. producing a hot hypersonic
air stream. In addition to the alr stream being hot (i.e., characterized
by stagnation temperstures of the order of thousands of degrees Rankine),

%Actually this procedure might better be considered the first step in
an iteration method where { is recalculated on the basis of the preced-
ing calculation of T as a function of x. This refinement is not con-
gidered warranted here where only the gross effects of yaw for angies of
yew well less than 90 are of principal interest. As the angle of yaw
approaches 90 the analysis as a whole tends to breask down due to the
violation of the several assumptions predicated on the flow being hyper-~
sonic normasl to the axis of the cylinder.

O gminiiiaaag
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it was required that the stream be of sufficlent duration to facilitate
megsurements of heat transfer. The apparstus which finslly evolved is
termed a hypersonic gun tunnel simply because i1t combines a gun with a
wind tunnel. Inasmuch as this gun tunnel has not been described in gen-
erally avellable literature, a brief description of its operation, cali-
bration, and performance will be given here.

A schematic dliagram of the equipment is shown in figure 1. A smooth-
bore gun 1s used essentially as a one-stroke pump to create a reservolir
of high-pressure, high-tempersture air. A charge of fast burning powder
is burned at the breech to accelerate the light-weight piston to a high
velocity in the barrel. The accelerating piston produces strong shock
waves which reflect a number of times from the blanked end of the barrel
and the piston. These shock waves compress the air in the gun barrel in
a highly nonisentropic manner, transforming much of the energy available
in the powder charge to the form of heat in the air. Accordingly, a res-
ervoir of very high-temperature air should be created.® As soon as
equilibrium pressures have been reached in the reservolr, the valve clos-
ing the entrance to the nozzle is opened and the high-tempersture, high-
Pressure air expands through the nozzle into the test section where models
are located.

Figure 2 is a photograph of the present model of the hypersonic gun
tunnel. This unit consists of a 20-mm smooth-bore barrel 5 feet long
with a breech chambered for the standard 60/20 cartridge. The barrel is
initially charged with dry air at 10 atmospheres pressure and room tem-
pera‘bure.6 A 20-mm dismeter piston constructed of nylon and weighing
3-3/h grams 1s used, and the cartridge 1s loaded with 27 grams of IMR
No. 4227 rifle powder. The nozzle valve is released 80 milliseconds after
the powder charge 1s ignited. In this time the reservoir conditions, as
Indicated by pressure megsurements, have approached steady values. The
flow exhausts through the nozzle into a vacuum tank. This tank, seen in
figure 2, has a volume of 10 cubic feet and is pumped down to a pressure
less than 0.0007 atmosphere before each test. In this manner sufficient
compression ratio (up to 45X10%) is provided across the nozzle to maintain
hypersonic flow in the test section during the course of the run.

The nozzle through which the flow expands is fabricated of stainless
steel and has s simple conical contour of 9o total angle and g l-inch

5In Appendix B gn estimate is made of the final temperatures that
mey be obtained from this nonisentropic compression. It is indicated
that for a compression ratio of about 32, the ratio of final to initisl
temperature would be between 4 and 7. The corresponding isentropic com-
pression procegs would yield a final to initial temperature ratio of only
about 2.

6Higher final sir temperatures should, of course, be obtained if the
initial air temperatures are increased. This possibillity is presently

being investigated.
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exit diemeter (see fig. 3). While the flow is thus expanding conically,
the rate of expansion i1s slow in the region of the models and for most :
practical purposes the flow may be considered parallel. The throat of ' =
the nozzle is a cylindrical section 0.020-inch in diameter and 0.050-inch
long. This section is machined as a separate insert and cen be replaced
when the nozgle throat becomes seriously eroded by the hested air.
Because of the length of the throat section, several runs cen ususlly be
made with one insert before erosion becomes serious in the sense that it
increases the effective sonlc throat diameter.

Calibration of Flow

Properties of the hypersonic stream produced by the gun tunnel were
obtained from the following four measuremehts: reservolr pressure, pitot
pressure, statlic pressure, and stream velocity. The reservoir pressure _ -
was megsured with the gage shown in figure h(a). The piston of the gage
was housed in an lnsert which connected to. an orifice lesding to the
reservolr section of the barrel (figs. 1l and 2). The O-ring seal near
the bottom of the pilston prevented leakage from the reservoir to the
atmosphere, and the entire unit was reteined by s yoke which was bolted
to the side of the reservoir. The piston transmitted the pressure force -
from the reservoir to strain-gage elements which were electrically con-
nected to & conventional bridge circuit, amplifier, and recording oscil- )
loscope. The time required for the reservolr pressure to reach equilib-~
rium was deduced from measurements mede with a low-sensitivity gage
element. A typical record of the initial pressure pulses is shown in
flgure 5(a), and it can be seen that these pulses are damped in well less
than 0.06 second. The measured peak values of the first pulse or two are
probably lower than the actusl pressure maxims because of the inertia of
the gage.’

The reservolr pressures used for calibration were measured with a
high-sensitivity-gage element which was mechanically stopped at 40O atmosg-
pheres so that the peak pressure would not deamasge the gage. The average
pressure for all runs is shown in figure 5(b) together with the standard
deviation from the average. This deviation was within +10 percent. The
timing pulse shown in the figure corresponds to the signal superimposed
on the oscilloscope record when the nozzle valve was opened. This pulse
was teken as the zero time reference for the beginning of flow through
the nozzle. i} -

The pitot pressure was measured with a conventlonal, strut-mounted
probe constructed from a 0.050-inch 0.D. hypodermic needle (fig. (b))
with an outer to inner diameter ratio (0.D./I.D.) of 1.47. The probe led .

1t may be of interest that the frequency of these measured pulses
is nearly identical to that predicted by the method of characteristics.
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to & variasble-capacitance dlaphragm-type pressure cell (fig. h(b)) con-
nected to a bridge circuit, amplifier, and & recording oscilloscope.

The response time of this system appeared to be instantaneous for prac-
tical purposes. The average value of the ratio of the pitot pressure
(measured on the nozzle center line) to reservoir pressure is shown in
figure 5(ec). This ratio is approximately constant at 6.6x10"% during
the first 0.3 second but then, for some unexplained reason, jumps to a
higher value and holds spproximstely constant until about 0.6 second.®
For the first 0.3 second, standard deviation limits shown in figure 5(c)
are within 4 percent of the average.

The static pressure was also measured with a conventional type probe
conslsting of a 13° included sngle cone-cylinder combination of 0.050-inch
0.D. mounted in the same manner as the pitot probe. The pressure orifices
were located at the test station and, to determine if the measured values
of static pressure were grossly influenced by Reynolds number effects or
feedback, a series of probes were tested. These probes had forebodles
and afterbodies that ranged from 30 to 60 dismeters in length as measured
from the pressure orifices to the tip of a probe and to the leading edge
of the strut, respectively (fig. 4(c)). Each probe was connected to a
cepacitance pressure gage which differed in only one respect from that used
for pitot pressure measurements. This difference was that a thinner dia-
phregm elemeht was used in order to obtain the necessary instrument sensi-
tivity at the lower static pressures. The pressures measured on the nozzle
center line with the several probes were essentially in agreement, and the
value of measured static to reservoir pressure for all runs is shown in
figure 5(d). The standard devistion limits for the first 0.3 second are
within 8 percent of the average.

Now it seems reasonsble to expect that the stream static pressure
actuslly varies like the pitot pressure during this intervel of time;
that is to say, changes in p/H with time (fig. 5(d)) are due primarily
to the finite response time of the static pressure measuring system.

With this thought in mind the measured data on p/H have been reduced
in the manner described in Appendix F. The corrected value of p/H is
found to be 5.32x10"% for the first 0.3 second of run. The corresponding
value of p/p; during this interval is 8.06x1073.

Pitot and static pressures were also measured l/8-inch of £ the nozzle
center line, and they were found to sgree with the center-line measure-
ments to within the stendard deviation.

8MThe flow does not actually choke to subsonic speeds until about
1.0 second, but after 0.6 second it is rather erratic. Accordingly, the
flow was calibrated only over the interval from O to 0.6 second. It was
found that the jump in pitot pressure occurring between 0.3 and 0.4 sec-
ond. is accompanied by unpredictsble changes in static pressure, in shock-
wave profiles about models, and in heat-transfer measurements.

QLR
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The stream veloclty was obtained by determining the rate at which a
disturbance passes through the test section. This disturbance was pro-
duced by the spark discharge of & 0.5 mfd capacitance at 10 kilovolts
across electrodes mounted in the stream shead of the test region (see
fig. 4(d)). The position of the disturbance in the test region was
recorded photogrephically with a schlieren spperetus using a spark dis-
charge light source. The veloclty of the stream was then taken as the
distance between the tips of the spark electrodes and the center of the
disturbance divided by the time interval between the disturbance spark

discharge and the schlieren exposure.9 Some typicel schlieren photographs

of different disturbances are shown in figure 6(a). (At the bottom of

the test region can be seen a blunt test probe and its associated shock-~

wave system.) Measurements of velocity were made for separate runs over
the range of flow time from 0.03 to 0.60 second. The flow time was agalin
measured from the opening of the nozzle valve. At each flow time, a
series of runs were mede in which the time interval between the disturb-
ance discharge and the schlieren exposure was varied. The data, shown
plotted in figure 6(b), appear to be relatively independent of this time
intervel, and it is therefore concluded that any consistent error exist-
ing in the velocity measurements is small. o

The reservoir pressure was not used directly to determine stream
properties, since it was considered unjustifiable to assume that the
expansion of air from reservolr to test region satisfied the usual isen-
tropic relations.. However, the reservolr pressure was used to nondimen-
sionalize the measured statlic and pitot pressures, inasmuch as the ratios
p/H end py/H were more consistent from run to run than the ebsolute
pressures. Pertinent streem properties were then determined in the fol-
lowing msnner. At hypersonic Mach numbers, the ratio of pitot pressure
Dy to dynamic pressure q4, is approximately independent of Mach number,
namely, -

L s
Pt Py _ _ (Yt [yt by
Pty = (3) (1 (7h)
24 o, U,

The function I'(y) is very nearly constant, varying only from 0.920 to
0.97T as 'y varies from 1.4 to 1.1. Then, the unknown stream parameters
are, in terms of the measured properties

density, P = pt/PU;F
static temperature, T, = Rm/paﬁ = (PU&f/R)p«jpt _ (75)

Mach number, Mo =, /U2/7 BT, =/ (04/P) /7L

SThe electrodes were of slender (15° wedge 0.0T5 inch thick at root)
cross section in the streemwise direction, so that while they might alter
stream Mach number, they were unlikely to appreciably influence stream
veloclty at the hypersonic speeds of these tests.

R i
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and the stagnation temperature T; is the solution to

2

Tt 0
_/; ColT = 5 (76)

The measured velocity of the stream is nominally 5000 ft/sec.®
Then, if ideal gas values are used for heat capacity in equation (T76),
the stagnation tempersture is 2200° R. If vibrational energy modes are
fully excited in any part of the flow, the correction for this celoric
imperfection might decrease the stagnation temperature to 2100° R (see
refs. 9 and 10). This correction is within the deviation in velocity
date, however, and therefore was not applied.

The ratio of static to pltot pressure, 8.06x1073, yields a Mach num-
ber of 9.8 (eq. (75)) and the initial velues of the pitot and static pres-
sure are 0.224 and 0.00l8 atmosphere, respectively. These pressures,
and therefore the density also, fall off approximstely exponentially dur-
ing the flow. Accordingly, the nominsl free-gtream Reynolds number also
decreases with time and is given approximately by the relation, Re = 1.26
e-t/0.6 niliion per foot.

The stream properties given above are all reproducible within 10 per-
cent. It will be noted that the stream velocity appeers somewhat lower
then the nominal value at the beginning of the flow (see fig. 6(b)). This
result may be due to the initial coaling effect of the sonic throat region
and the reservoir. In any case, however, this decrease in velocity is
within the standard devistion of the data, and the nominasl value of veloc-
ity will accordingly be taken as 5000 ft/sec for the entire interval of
flow.

In addition to the above calibration, the purity of the air stream
was tested by analyzing gas samples with a mass spectrometer and semples
of condensable phase impurities by X-ray diffraction and emission spectro-
graph methods. The gas samples were collected with a pitot tube leading
to an evacuated glass flask. At a predetermined time of flow, the copper
tubing leading to the flask was sealed with a hydraulic pinch. The con-
densable phase impurities were simply collected by impact on a spectro-
graphic grade copper rod and time scale effects were differentiated by
using s movable rod within a shield.

It was found that the gas samples were essentially normal air except
for about l-percent carbon dioxide and a trace of nitrous oxide. As
expected, the percentage of these impurities increased as the sampling

loVelocities up to about 8000 ft/sec have been obtgined using larger
powder charges. This result implies stagnation temperatures in excess of
5000° R. Damage to the gun barrel was, however, excessive to the point
of being intolerable under these éircumstances.

L )
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time interval was lengthened. The condensable phase impurlity was found
to be lron oxide, undoubtedly originating from observed areas of erosion
in the reservoir and. the nozzle throat. Samples taken at the beginning
of flow showed very light film deposits of impurities, and for this reason
it 1s felt that the initisl heat-transfer rates measured at the beginning
of flow should most nearly represent the correct values for normal air.®®
Therefore, only these initial data are interpreted in the following por-
tions of this paper. This procedure also serveg essentially to eliminste
the problem of evaluasting heat-loss corrections for the heat-transfer
models since these corrections must vanish st zero time when thermsl gra-
dients along a model are zero.

Heat-Transfer Models and Reduction of Deta

The models used in the hest-transfer experiments were tested at the
same station at which the pitot and static pressure dats were taken.
These models were butt-welded iron-constantan thermocouple cylinders
(f1ig. 7(a)) transverse to the flow at various angles of yaw. Wires of
0.003-, 0.010-, 0.012-, 0.020~, and 0.04O-inch diameter were tested at
zero yaw. The 0.003-inch-diameter wire was tested at 22.5°, 45°, and T0°
angle of yaw and the 0.020-inch diameter wire was tested at 45° yaw (shawn
installed in the test region, fig. T(b)).*2 The thermocouple junctions
were examined microscopically and were rejected 1f the weld showed visible
imperfection.

The diffusivity of the thermocouple material was sufficiently large
to permit the assumption that temperature gradients across the thermo-
couple junction were negligible (i.e., the time of diffusion to within
95 percent of constant temperature is very much less than the time con-
stant of response of the thermocouple to heat transfer from the air
gstream). Thus the average rate of heat transfer per unit area to the
models was proportional to the rate of change of temperature indicated
by the thermocouple junction. Under these conditions the average heat-
transfer rate satisgfiles the relation

=  _ BpCppp dTp

T ST & (17) __

1iThe possibility of these impurities causing errors in the heat-
transfer data 1s considered further In Appendix F.

12The ratio of length to diameter of all test cylinders was 25 or
greater. In the case of the yawed cylinders thils ratio was always in
excess of 50. Accordingly, it is felt that end effects on measured heat-
transfer rates are negligible, with the possible exception of the data
for TO° yaw.

WS TDENTIAL
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where Ty, 1s the temperature of the thermocouple with radius Rb’ speci-
fic heat Cy, and density fp (note C% is essentially the same for
iron and constantan). It is convenien p&n the analysis of date for the
cylinders at zero yaw to employ an average heat-transfer coefficient h

defined by the equation
. -y
A=—2>

T (78)

It follows that the aversge Nusselt number, based on stagnation tempera.-
ture conditions and a characteristic length equal to the diameter of s
cylinder, is given by the expression

. 2hR Ry, 2C a
o = b _ b ~bPb b

T o (Ty - ) (79)

Figure 8(a) shows the output from the 0.003-inch-diameter transverse
thermocouple for a typlcal zero-yaw run. The rate of temperature rise
drops below expected values after about 0.05 second. At sbout 0.3 second
the record indicates some perturbation in the flow as did the static and
pitot pressure measurements, and observed shock-wave profiles. The initial
temperature rise, which is of principal interest here, repeated to within
10 percent from run to run. In order to measure this initial rise more
accurately, the oscilloscope sweep speeds were adjusted to give about 45°
slope of the tempersture-time curve. A typical temperature-rise curve on
the expanded time scale is shown in figure 8(b).

RESULTS AND DISCUSSION

The theory of this report treats, of course, only the heat transfer
to the stagnation region of a body in hypersonic flow. Nevertheless, for
& relatively blunt body, such as a transverse cylinder, it seems reason-
able to expect that in hypersonic flow, just as in lower speed flow, the
average rate of heat transfer will vary in proportion to the stagnation-
region heat-transfer rate. With this thought in mind, it is noted that
according to equation (39) for a cylindrical stagnation region
(A=0,n=1/2, B/T, << 1)

Nu - /(% §£> (80)
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If R /R 1s considered constant (presumably at some value near 1),
" then 1t is egsily demonstrated that

Mo~ [ D%  JRe; (81)
Mm

neglecting small differences between Ho 8nd Hg. This is essentially
the result deduced experimentally. by Kovaznay (ref. 11) and by others
for the average Nusselt numbers of cylinders transverse to subsonic and
supersonic flows. The experimental data obtalned in the hypersonic gun
tunnel should provide some indication of whether or not the result holds
in the same sense for hypersonic flows. These data for transverse cylin-
ders are presented in figure 9, along with the predictions of equa-
tion (81) (replacing Nu with ) and with data obteined from hot-wire
type experiments by Kovaznay (ref. 11), Stine (ref. 12), and Stalder,
Goodwin and Creager (ref. 13). Specifically, there are shown (after the
method of Stine) the average Nusselt numbers as a function of M Re _Pr.
The agreement between the data obtained from the hypersonic gun tunnel
and those obtained by the hot-wire method 1is surprisingly good consider-
ing the wide difference in test conditions'?4 (e.g., as contrasted to the
gun-tunnel deta, the data of reference 12 are for Mach numbers less than
1.4 and stagnation temperatures less than 590° R). Note, too, that the
scatter of the date from the gun tunnel is by and large of no grester
order of magnitude than that of the datse in references 11, 12, and 13.
Finally, it is observed that equation (81) is quite as consistent with
experiment at hypersonic speeds as it is at lower speeds. Evidently,
then, average rates of heat transfer to transverse cylinders in hyper-
sonic flow do tend to vary in proportion to the stagnation-region heat-
transfer rates. )

It is appropriate to ingquire now about the effect of yaw on the rate
of heat transfer to a cylinder in hypersonic flow. In this regard it is
of interest to see first what theory predicts for the effect of yaw on
heat transfer to a cylindrical stagnation region. Two cases will be
treated, namely, /TO = Q and Tb/To 0.24, the value corresponding to
test conditions in the hypersonic gun tunnel. If Prandtl number is taken
equal to 3/h and the tempersture exponent for the thermal conductivity

13Note that while the test Reynolds numbers are low, they are, accord-
ing to estimate, within the range of continuum laminar flow.

14While the stagnation temperatures of the hypersonic gun tunnel were
far greater than those of the other tests, it should be noted that they
were well below temperatures at which dissociation might be expected to
occur and, hence, possibly influence heat transfer.

NELHPIDENT D
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and viscosity functions is taken as 1/2,15 then according to equation (72)
the stagnation-region heat-transfer rate is influenced by yaw in the man-
ner shown on figure 10. For the case of Tb/T = 0, 1t is indicated that
yaw should reduce the rate of hegat transfer almost in proportion to cos S
(note this is the same reduction factor as for impact pressures). For the
case of /T 0.24 the predicted reduction in rate of heat transfer is
somewhat less, although still very sizable. How well this prediction
agrees with measurements of average heat-transfer rates to yawed cylinders
in the hypersonic gun tunnel is shown in figure 11. The average rates are
observed to decregse with increasing yaw in much the manner predicted by
the stagnation-region theory. For example, at TO° yaw, theory and experi-
ment show about a 60-percent reduction in heat-transfer rate.

The stagnation-region theory and hypersonic gun-tunnel experiments
have, then, provided useful Information on the problem of heat transfer
to cylinders in hypersonic flow. However, all of the considerstions,
both theoretical and experimental, up to this point have been for the
case where the gas does not dissociate and therefore the gas properties
vary with temperature in s somewhat ideal manner. At the very high tem-
peratures encountered in hypersonic flight (namely, at temperstures in
excess of sbout 5000° R) gas molecules mey dissoclate into atoms. It is
natural then to inquire how dissociation might alter our previous con-
clusions. Accordingly, the effects of equilibrium dissociation on the
rate of heat transfer to a cylindricel stagnation region at zero yew have
been examined theoretically in Appendix G. The calculated heat-transfer
rates are increased by dissociation at Mach numbers greater than 10 (see
fig. 12). It is suggested, then, that equilibrium dissociation (should
it occur) may alter our previous conclusions regarding the effect of yaw-
ing a cylinder to the extent that somewhat greater reductions in heat-
transfer rates will be achieved. This possibility derives from the fact
that the high temperatures which bring about dissociation tend to be
decreased by yaw.l8

CONCLUDING REMARKS

It has been argued theoreticall& and demonstrated experimentally that
yaw can have the effect of substantislly reducing the rate of heat transfer

S The 1/2 power law is, at the very high temperstures encountered in
hypersonic £light, a rather good approximstion asccording to Sutherland's
equation ( = const), although actually the results of theory are rela-
tively insensitive to n (except at very large yaw) over the range
1/2 < n < 3/k.

187t is perhaps worthy of note, too, that by the same token radiation
heat transfer from the high temperature disturbed air to the body surface
should be aglleviated by yaw.

GPFIDERNTIND
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to a circular cylinder in hypersonlc flow. Bxperiments on small cylin-
ders in & hypersonic air stream of Mach number 9.8 and stagnation
temperature 2200° R tended to verify this prediction, indicating that

the rate of heat transfer was reduced to about 40 percent of its zero-
yaw value when the angle of yaw was 70°. These results are interpreted
to have the practical significance that sweep may markedly reduce the
heat transfer per unit area to the blunt leading edge of & wing in hyper-
sonic flight.

Ames Aeronsutical Laboratory —
National Advisory Committee for Aeronsutics
Moffett Field, Calif., May 2, 1955
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APPENDIX A
SIMPLIFICATION OF THE y MOMENTUM EQUATION IN REGION 2

The steady-state, two-dimensionsl y momentum equation (see eq. (2)),
differentiated with respect to ¥y, yields .

2
ou 2y dp éz Qv du v dp éi . p<§§>2

—_—+ p— — + pv
OxJdy

u§;3x+ ox Oy 5;2_+v$5y
Fp 2 [ @u Bv)] az< av> 32 3
=-22_2° |p(Se, 2 2 (L) S —_
3y 3 3y7 d X * oy * dy>2 H oy * dydx [LL<§; T % ] (a1)

Now on the stagnation streamline the velocity v 1s identically zero
and therefore all x derivatives of v are zero. Also, all odd order
y derivatives of functions like density p, viscosity w, pressure p,
and velocity u vanish since, by symmetry, these functions are even.

In addition, it is assumed that near the stagnation streamline the veloc-
ity u is so small throughout region 2 that terms with this factor may
be neglected. With this assumption an edditional useful relation can be
deduced from the continuity equation

du % +p v % _ (a2)

Eliminsting the terms with factors wu, v, or Op/dy from equation (a2)
there results, as for incompressible flow,

du ov
— == =0 A
ox " oy (a3)

Note that all derivaetives of the sum Ou/dx + dv/dy are also zero in the
regions where equation (A3) will hold.

Applying the above considerations simplifies equation (Al) to

é%) = - éég 2 K= ov e [ du , ov } Al
°<ay i VY) T e M\ey T (&%)

WORFTIENTIALD
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Now it will be assumed, as is usual, that the viscous flow in the region
of the stagnation point of a blunt body is similer to viscous flow at
the stagnation point of a Body with infinite radius of curveture insofar
as the velocity derivatives are concerned (i.e., the principle effect of
the body curvature is to determine the magnitude of the pressure derivae-
tives). Accordingly, 3%v/dy® and d%u/dy® will be supposed to vanish
in the stagnation region. Then expansion of the second member of the
right side of equation (Al) yields

> (5% dv , o du By aa >
P oy T EwEt

in which the only term retained is 2(82u/6y Y(3v/dy). Similar expansion
of the last member of equation (Al) gives

BED 20 D &
oxdy \Oy ox Bxay dx Bxay Byzax Byax

Note that from equation (A3), 3°%u/dy®dx is eguivalent to -(3%v/dy3) and
will therefore be neglected. The terms retained in this equation, then,
are (Op/dx)(d%v/dxdy) + n(d%v/dydx®). These terms can be combined into

-
ox

H %i%). Equation (A4) thus is reduced to
X

d 52u>_ 3%p 3% dv @;)2
ax<“ax2 —‘gy—z'+2§'y—2-g;_-p‘; (a5)

The derivative Ov/dy vanishes at the surface of the body, so that in
the immedlste region of the stagnetion point, equation (A5) takes on the
approximete from -

d 33y _ O%p '
w\P5E) " 52 (a6)

This expression will be taken to hold near the stagnation streamline
throughout region 2.
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APPENDIX B
BOUNDARY VELOCITIES AND PRESSURE DERIVATIVES

For hypersonic Mach numbers, the density ratio across an oblique
shock wave is

Pg  7g + 1

— = (B1)
P, 75 -1
then the pressure just downstream of the shock is
20 U . 2cos30
Pg = —0 00 (B2)
7 1 _

where o is the acute angle between the shock wave sand the normal to the
free-stream velocity vector (see ref. 9). It can also be shown that the
v component of velocity just downstream of the shock is

2
7g t 1

vg = Uosin o cos @ (B3)

while the u component on the stagnation streamline is

75"1
Us = 7g + 1

Uy (Bk)

In evalusting the derivatives, consider a shock wave with radius of
curvature Rg. Let s De the distance along this profile measured from
the stagnation streamline and x(s) and y(s) be the equations for the
shock-wave coordinates. Then

dvn dv dx ov dy
&L= B5
ds Ox ds * dy ds (25)

while

a%p _ 3% Qi.z 2521’ Eiz+§£ ﬂz+§2d_%‘_+a_952_2 (B6)
2 w8 T Ty I T HE I T i as? oy as?
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Tn terms of the radius of curvature Rg, the differential equations for
x(s) and y(s) are -

R
dx = RS<? - cos %S

) (BT)
4y = Rgsin §2

/

and at the stagnation streamline (ds = 0) the following conditions hold .

gy_— h

ds 1

dx

E—O

(B8)

@ %

ds®

@x _ 1

ds2 Rg J

Then, at the stagnation streamline, equations (B5) and (B6) become

ov\ _ dv
'a}) - & (B9)
8
and
N _ & 1
§B)-2-2() (m10)
Now by continuity and equations (B3) and (B9)
8%) <.I> 20y,
= Bll
0%/ (7 + 1)Rg ()
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for two-dimensional flow. For axially symmetric flow the corresponding
relation is

<.a£> =_28_V =-__)+U£_ (312)
Ox /g or/, (75 + L)Rg

According to equation (B2) the first right-hand term of equation (BLO) is

2
dz_p - )'l'pooUoo (Bl3 )

ds® (7, + 1)Rg®

while the next term, - ;L-<§£> y 18 evaluated using the x momentum
8 s

equation (eq. (1)) which for the nonviscous incompressible flow region on
the stagnation streamline reduces to

dx ox (B1h)
According to equations (Bll) and (Bl2), equation (BllL) becomes

ap _ 2(75 - l) pBUmE

ox (74 +1)® Rg

(B15)
and

op - byg - 1) psUQ?

dx (74 +1)% BRs

(B16)

for the two-dimensional and the axially symmetric flow cases, respectively.
Then the corresponding second partigl deriwvatives of pressure are

ﬁ - - 6(75 - l) psUmz
i (74 + 1)°Rs®

g

(BL7)
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and
2 8 - 1)p U2
a_g = - (78 )pS 0; (318)
or (75 + 1)°R,

Note that 75 can have values somewhat different than 1.4 if vibra-
tional and dissociational energles are excited at the shock wave. The
results of this appendix are consistent if 7  1is defined by equation (BL)
from the ratio of densitles across the shock wave. When additional energy
modes are excited at the shock wave, this effective value of 7, is not
exactly the ratio of specific heats.

It can be seen that for the cage of a yawed two-dimensional body, the
same relstions hold as for the body at zero yaw except that the velocity
U_  is replaced by the normal component of veloeity, Ugcos A. Thus the

[+¢]
yawed two-dimensionsl body has a second derivative of pressure

3 _ _ 6(7, = 1)pgUx cOB=A (519)
ay® (75 + 1)2332

In the above relations the radius of curvature of the shock wave Rg
is yet undetermined. In the limit of infinite free-stream Mach number,
the ratio of shock wave to body curvature, Rs/Rb, might be expected to
approach unity as an upper bound. On the other hand, a value of Rs/Rb
consistent with incompressible boundary-layer solutions may be a reason-
able lower bound. In this regard Howarth (ref. 7) reports that for two-
dimensional flow

Frls - (e20)

= — _ : (B21)

— = — B22;
SrE e
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for axially symmetric flow.

LS oy

This corresponds to the ratio

Bs __ 4
Ry 3(y - 1)

4

(B23)



o NACA RM AS55EO02

APPENDIX C

HEAT TRANSFER TO AN AXTALLY SYMMETRIC STAGNATION.REGION

The methods used to calculate the rate of heat transfer to a cylin-
dricel stagnation region can also be applied to the stagnation region of
a spherical body. Thils analysis is parallel to that for the cylinder at
zero yaw and thus the x axis is taken as the stagnation stresmline and
the origin of the coordinate system is placed at the interface between
the assumed incompressible nonviscous reglon 1 sand the viscous, low-
velocity, compressible region 2. For the purpose of obtaining the solu-
tions for velocity in regions 1 and 2 on the stagnation streamline, it
is most convenlent to conslder the momentum and continuity equations in
cylindrical coordinates. Because of axial symmetry, ell properties are

independent of the angular coordinate and, accordlngly, the r direction o

momentum equation becomes

dv y)hgg_za[ au dv >J (
p(“ax”ar S 3% L"\&tTE Tz +2"

Liov v ) ou , ov
2 - - -— — 4 ==
dr r> * ox [u or * 3;)} (c1)
While the continuity equation is

Se (pu) z y (prv) = (c2)

In region 1 where the viscous terms are considered ldentically zero,
the r momentum equation (eq. (Cl)) reduces to

L= S R '
i\ ox v or ) or (c3)

Differentiating equation (C3) with respect to r and dropping terms with
factors v and dv/Ox, which venish on the stagnation streamline, gives

2
v 3%y 1 8
— F U ——— e
or dxdr P 2 (c&)

——
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BN+ p & = ) (c5)

however, on the axls of symmetry, neglecting terms higher than second
order in ,

ov

or

H |4

(cé)

Thus, for incompressible flow, the continuity equation on the stagnation
streamline reduces to

du ov _
_6_;4_231_‘_0 (CT)

Substituting equation (C7) into equation (Ch4) yields
1/3uY _ud 1 3%
=(S&E) _v&eu_ = c8
n <Bx> 2 Jx2 P 3r? (c8)

which, upon differentiating with respect to x, and assuming

%-a? = constant, becomes

u—==0 (c9)

For nonzero values of the velocity u, this differentisl equation has as
a solution

u =

1t
Eg— X2 + ug'x + ug (c10)

L)
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The value of velocity at the interface, u,, 1s again considered very
small. Thus, from equation (C8), the first derivative of velocity at the
interface is, approximstely,

2B (c11)

As can be seen from the solution for velocity, equation (ClO), the second
derivative of velocity is constant. Therefore the second derivative of
velocity may be evaluated from equation (C8) using conditions just behind
the shock wave, thus,

'2

u 2
ut = 2y 2 aig) (c12)
2ug ugpPg \ Or s

Substituting for the values of velocity, velocity derivative, and
second pressure derivetive behind the shock wave (see Appendix B) yields

no_ 8(3 - 2‘78) Uoy

= (C13
Yo 7,Sz -1 Rsz ( )
and
L2 -1
agt = - 27 = 1) Uy - (c1t)

75 +1 Rs

Now in regilon 2, the viscous terms are retained in equation (Cl).
Following the procedure used in studying two-dimensional flow (see Appen-
dix A), the r momentum equation, differentiated with respect to r, is
simplified to - —

a m 32u> aZP
T\ |J=-T3 : Cl
" (2 =) w2 (c15)
which integrates to - : -
S -Eery @8
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and, as in the case of the two-dimensionsl flow,

p du 3% x°

The constants A and B are agaln determined by matching the first and
second derivetives of velocity at the interface. Thus

A=“ouo"
) (c18)
CL
Koo'
B = [ohal®]
2

At the body au/Bx vanishes, and solving for the coordinste Xy, from
equation (CLlT7) results in

n n 2 '
r2 Loug
2@#) °

In Appendix B it is shown that

% 8 o U2
=% = - i (c20)
74 + 1 Rg
Thus from equations (Cl3), (Clk), and (C20), it can be shown that
I azP Ug ' _ (r - 1)2 Ne(y - 1) He Bs (ca1)
= = T8
or® ugu" (3 - 29)2 Ho Ry

which is large compared to unity for any reasonably large value of
Reynolds number (of the order of hundreds or greater). Therefore, if
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quantities of the order of unity are neglected in equation (C19), the
stagnation point coordinate reduces to B -

Xp2 = —eQ : (c22)
’ P = 62
d3r®

which is identical Iin form to the relation for body surface coordinate
in the two-dimensional flow (eq. (19)).

Next, in region 1 the viscous dissipation and hest-conduction terms
are agein neglected in the energy equation, and terms that vanish by
reasons of symmetry along the stagnation streamline are dropped. Thus
the energy equation for region 1 tekes the same form as equation (23) for
the two-dimensional problem and, since the interface veloecity is small,
the interface temperature T, 1s again approximately the stagnation tem-
perature Ty.

In region 2, the heat-conduction terms in the energy equation pre-
dominate, and the equation reduces to the three-dimensional Laplace
equation in the variable 7

3%n % 3%
+ + =0 c23
dx®  dy® 2% 8 ' ( )—

In order to fit the boundary conditions on a spherical surface, the
solution is given in terms of spherical coordinstes (¥, 6, and ¢). The
general solution which preserves symmetry about the x axis (1l.e., which

is independent of @) is
[o.0]
n D .
+ E; <?nr + :ﬁ%%) P,(cos 8) (cak)
Ve
n=1 R

where Pn(cos @) is the nth order Legendre polynomial in cos 6. If 1t
is required that 17 be a constant, Mo OB the surface of the body, equa-
tion (C24) can be reduced, on the stagnation streamline, to

(o]
= -1<1-R—b + Z ouf | 1- R—b2n+l | (c25)
Tl-'flb Rb f‘ n T
n=1 _

n=A+

Rijd
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then expanding in terms of € =  .1<< 1, results in

Ry,
n=1 +Lle-e%)+... (c26)
]
where L is - %L + ;Z Cn(2n + l)Rﬁn. Neglecting the quadratic term in
b
n=1

€, evaluating 1 at the interface, and transforming to the variable x,
one obtains for equation (C26) on the stagnstion stresmline

X
n=n, - (n, - v (c27)

Then the rate of heat transfer to the stagnation point 1is

- IIIO
_'q.b' = —_Tlo nb = L f k 4T (028)
X'b xb Tb

which is identical in form with the zero-yaw solution for the two-
dimensional-flow problem (eq. (31)). Note, however, that the second
derivative of pressure given by equation (B18) is larger by a factor

of 4/3 than it is for the corresponding two-dimensional-flow case with
the same shock-wave curvature (eq. (BL7))., Thus xp given by equa-
tion (C22) is changed by the factor (3/h)1/4 and the rate of heat trans-
fer to an axially symmetric region becomes

e [ 1 ]1/4 (%m E_{D>J./2 Reoa:l.la \/ﬁTo
b - 2(7g = 1) Ho Rg Ry, T k dT (ca9)

while the corresponding expression for Nusselt number is

1/ 4 1/2 Re /2 To
Nu = <_8__> ;‘Je gtz _— f k dr (c30)
7s © s ko (T - Tp) T

ERTTE - FIPCI T bR L,
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APPENDIX D
EXAMINATION OF ANATLYTICAL RESULTS AND ASSUMPTIONS

A number of assumptions have been made in the theoretical anelysis,
and it is desirable now to show that the solutions obtained are both
reglistic and consistent with these assumptions. In particular, it will
be shown that the presumption of e constant second derivative of pressure
normsl to the stagnation streamline ylelds solutions for the distance
between shock wave and body which are reasonably close to observed values.
Secondly, it will be demonstrated that the u velocity throughout
region 2 1s indeed 8mell, as assumed in the asnelysis, if the Reynolds num-
ber is large enough for continuum flow conditions. In addition, it will
be shown that for region 2 the viscous-dissipation terms due to the
u and v component velocity derivatives are smwall compared to the heat-
conduction terms in the energy equation, again provided the Reynolds num-
ber is not too small. These findings, then, help to justify the manner

Now it is obvious that the assumption of an abrupt transition from
nonviscous; convective flow to viscous, conductive flow is a substantial
idealization of the actusl flow.l It is possible, howevér, to make a
gross check on the self-consistency of this model by comparing the amount
of heat convected across the interface with the amount conducted to the
body surface. When this is done it is found that from e heat-flow point
of view, the model is self-consistent (i.e.,-heat convected provides for
heat conducted).

As a final point, a comparison will be fade between the analysis of
this paper and the heat-transfer solutions for low-velocity flow given by
Howarth (ref. 7) snd Cohen and Reshotko (ref. 8).

Distence Between Shock Wave and Body

Consider first axially symmetric flow. The velocity in region 1 was
found to be (eg. (CL0))

_ v o
u—uo+uox+Tx (p1)

lstrictly speaking, this idealized model should be considered simply
e first spproximetion to the correct situation. A second approximation
would be to divide the domain between the body end shock wave into three

regions rather than two as was done here. _ _ Tl

L )
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Then, the shock-wave coordinate must be
0
Xg = ——— (p2)

It can be shown from the relations in Appendix B and equations (Cll)
and (C12) that

us' = -

ol = - k% _1“1.0__.,2(7 - 1) > (D3)
(o] o) - T 5

Substituting these relations into equation (D2) yields

xs (7 - D - J20, - 1]

Rg 2(3 - 275)

(D)

Note that for 75 = 1.5, uy" vanishes and the velocity profile becomes
linear. For this case xg/Rg reduces to (7s -1)/h.

The actual distance between the body end the shock wave 1is, of course,
the sum of xg and xp. However, it can be shown from equations (C22) and
(D+) that Xp 1s small compared to Xg for reasonably lasrge Reynolds
numbers, and xj, will therefore be neglected. The ratio xS/RS calcu~
lated fram equation (D4) for 7, equal 1.k is 0.105. Measurements of
xs/Rb taken fram spark photographs of high-velocity spheres presented
by Charters and Thomas (ref. 15) and Dugundji (ref. 16) approach this
value closely at high Mach numbers (i.e., xs/Rb about 0.1l at Mach num-
ber 4). Heybey (ref. 17) has developed & theory which fits the data of
references 15 and 16 closely and, for the limit of infinite Mach number,
predicts XS/Rb about 0.12. Thus 1t is seen that at high Mach numbers,
the assumption that the second derivative of pressure is constant and
that the ratio Rb/Rs is near unity ylelds results which are consistent
with experimentally observed distances between shock wave and body, as
well as with the theory of Heybey.

GREEDET TN
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It is of interest to calculate the shock-wave coordinate for two-
dimensional flow as well. Recall that the solution for velocity in
region 1 for this case 1s - -

1

u,
u = —%— sinh Cx (D5)

and thus

du

3x

, .
Ug cosh Cx

The velocity derivatives at the shock wave ‘and at the interface, given
in Appendix B, are, respectively,

20,

us' = e ———
(rg + 1)Rg
’ (D6)
uO' = o |- _:_L_azp - - UooV6(7s = 15
o oy= (7 + LRs |
Then the product Cxg is given by
2
Cxg = arc cosh ——————— (D7)
N6(7, - 1)
With Cxg known and the velocity at the shock wave
7g = 1 '
7g t 1 - .
The shock-wave coordinate becomes
Xg 73 -1 Cx
== - . (p9)
Rg 6  sinh Cxg4
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For a 7g of 1.4, Cxg tekes the value 0.75 end since the sinh fune-
tion is very nearly linear over this range, rather close bounds on the
shock-wave coordinate are imposed by

u u
—-| < |xgl< |== (D10)
Ug U.o
or
7g - 1 Xg 7g - 1
—_—_— << — D11l

The exsct theoretical solution for xS/RS at 74 = 1.4 is 0.236.
According to the theory then, a shock wave with given radius of curvature
should be detached from a cylindrical body about twice as far as fram a
gphere.

Mognitude of Velocity in Region 2

The y momentum equation in region 2 was reduced to

du
PR

ox —;E

O/

%T + g (p12)
)

The left side of this equation mey be approximated by S— (pu) with the
X

presumption that velocity in region 2 is small. Then equation (D12) may
be integrated to

>
HU = = == == + Lougy'X + Holg (D13)

y2

Solving for uy, noting that velocity vanishes at x,, and substituting
from equstions (14%) and (19), one obtains

[ 2 T
. Tl (D1h)
Ps

ST TG

§
I
1
wi
§
&
I
W
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It follows that the ratio of interface velocity to the velocity at the
shock wave is given by

(uo S8 Mo U9l >R_b o (DL5)

which on substltuting the relations given in.Appendlx B for u,' and ug

becomes
° / (HJ?- ) (D16)
-1 Re

It can be seen thet for large Reynolds numbers, of the order of
hundreds or greater, the velocity at the interface is small compared to
the velocity at the shock wave. Since the velocity in region 2 1s every-
where less than at the interface (see eq. (D13)), the solutions obtained
for velocity are consistent with the assumption that velocity is small
throughout region 2.

Viscous Dissipstlon in Regilon 2

Although the derivative of velocity venishes at the body surface, it
increases parabolically (see eq. (D12)) to u,' at the interface. Since
viscous dissipation terms due to this velocity shear were neglected in
solving the energy equation, it will be shown that the maximum value of

these terms, which occurg at the interface, is small compared to the heat-

conduction terms like d°n/dx® (note that by continuity Ov/dy contributes
a dissipation term of the same magnltude as - du/dx). From equation (30)

it can be seen that the term 0O n/ax is nearly constant everywhere along
the stegnation streamline in region 2. Then the ratlo of differential
terms in the energy equation is, by equations (30) and (Dlh),

1\ 2 2 To -1
(3®n/), Tp

If equation (DL7) is evaluated for constent heat capaclty and thermal
conductivity proportional to the nth power of temperature, there is

obtained .
b (g | .
o\Uo ) (U-o ) = 18(n + 1) <_.Q> (D18)

(o ﬂ/ax )b
Q@IhENT R
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Substituting for velocity ratio uy/U, from equations (D16) and (B4)
and for the ratio Rp/xp from equation (21), there results

2 o182 a/4 i/2 3/2 _
o) g0 l)Pr<7 l) ( 6l> §9> I;.R_b> pe,_ M2
(3%n/3x3)y, 7+ 1 7- . s (DL9)

Once again the square root of Reynolds number is the predominant term for
conditions of continuum flow snd thus the viscous dissipation terms in
the energy equation are small compared to the conduction terms in region 2.

Heat Convection Across the Interface, x = 0

Next consider the ratio of the heat convected across the interface,
To
pU, f CPdI » to the heat transfer at the stagnation point of the body,
o

-y '+ The value of ug given by equation (D14t) and -n,"' from equa-
tion (32) ylelds

IIIO
To Ty 2 CpdT
D
_ P4 CPdT = = 2uo'¥p 0 o (DQO)
le’ 3 To
° [ "k ar
Ty

Again evalusting for constant heat capacity and the nth power tempera-
ture function for thermal conductivity, and noting from equations (14)
and (19) that ug'xp® reduces to -(2po/p), one obtains

= % Pr(n + 1) (p21)

This ratio is the order of unity, and thus the right megnitude of heat
is convected across the interface to balance the heat conducted to the

body. The above result also provides a check on the value of Xy Wwhich
was obtailned by matching wu,' as a boundary condition of the y momen-
tum equation.
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Low-Velocity Heat Transfer

For hypersonic velocitles it was found that teking shock-wave curva-
ture equal to body curvature on the stagnation streamline gave approxi-
mately the correct answer for the distence between the body and the shock
wave, so presumably the ratio Rb/Rs should be tasken near unity when cal-
culating the heat transfer as well. Undoubtedly this ratlio will be some-
what less than unity for low Mach number supersonic flow, and it is of
interest to see what the solutions developed in this paper will predict
for this case (even though the assumptions made in the enslysis are not
expected to hold as well for the low-velocity flow conditions). For this
purpose it is convenient to express the body coordinate x,, 1In terms of
Eavgby)o which by continuity equals -ug'. Fram equations (9), (i), and

19

3 . __uo. s
NS ), (v22)

then solving for Nusselt number from equastions (32) and (34) for the case
of the cool wall (T,/T, <<1, and n = 1/2) one obtains

p(3v/3y),

2% _o.uyp, [t
Nu =0T Dy ™ (p23)

win

The method of boundary-layer solution for low-velocity flow about a cylin-
der given 1n reference T, yields for the derivative of velocity component
normal to the stagnation streamline at the edge of the boundary layer, in
the notation of this paper, ’

éx _ 3.8US _
ay) g (D2k)

Substituting in equation (D23) results in

Nu = 0.92 Re,sl/2

where the small differences between ug and pg are neglected. The con-
stent 0.92 compares favorably with the value 0.95 given by Howarth for
Pr = 0.72. This agreement is esgpecially remarksble in the light of the
fact that the analysis of reference 7 is for constant thermal properties,
while variation in thermsl properties is an essentiel feature of this

anglysis.
CONMEDENTIAT ™
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Cohen and Reshotko (ref. 8) find that the solution for a compressible
boundary layer gives the followling relation at the stagnation point of an
axially symmetric body

y—‘;b—y - o.kbo /& (p25)

for the case of a cool wall and a Prandtl number O0.7. If the radisl con-
ponent of velocity v i1s taken proportional to ¥y, the ordinate can bhe
eliminated and equation (D25) reduces to

Nu = 0.440 Dy /m - (D26)
s

The factor 0.440 given by Cohen and Reshotko compares favorably with the
factor 0.47 given in equation (D23).
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APFENDIX E

ESTIMATE OF RESERVOIR TEMPERATURES IN THE HYPERSONIC GUN TUNNEL

A highly nonisentropic compression process, like the multiple reflec-
tion of shock waves that occurs in the reservoir section of the hypersdric

gun tunnel, is capable of producing high final air temperatures. An esti- “'

mate of the magnitude of the reservoir temperatures attainable in the gun
tunnel is obtasined by equating the internal energy gained by the reservoir’
eir to the work done I1n compressing this air. Thus sssuming no heat loss
(i.e., adiabatic compression) we have - ) N

T2 Vo

olvlf CydT = - f pav (EL)

Tl vy

where the subscripts 1 and 2 refer to conditions before and after the com-
pression, V is the volume of the ges, and Cy 1s the specific heat at
constant volume. In terms of an average specific heat, CV, and s mean
pressure, D, equation (El) is

P1ViCy(Te = Ty) = B(Vy - Vp) (E2)

By substitution of the mass conservation relation, pl/p v /V the ideal
gas law P = pRT, and an average ratio of specific heats ¥ de%ined by

¥ - 1 = R/TYy, equation (E2) cen be trensformed to
, 1+ (-3
=2 _ — oL (E3)
Ty 1+ (7 - L)%/,

Now the mean pressure during the compression process will probably be less
then the final pressure, p,, but greater than the average (pl + pz)/z. It
these values are taken as the limits of P, and in addition p; 1is very
small compared tO Dy, the temperature limits glven by equation (E3)
become spproximstely

¥ -1

7 -1 T
Y+lp TH T 7 Py
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For an average ratio of specific heats 7 = 1.3, the limits become

0.13 Eg
b, —

I—:llml—.'.l

< 0. 23 Pl (B5)

The compression ratio realized in the hypersonic gun tunnel is presently
about 32. Then for an initial temperature T, = 530° R, the reservoir
temperature limits indicated by equation (E5) are

2200° R < T, < 3900° R (E6)

Recall that the reservolr temperature deduced from the velocity measure-
ments is 2200° R, the lower limit given by equation (E6). Undoubtedly
the temperature corresponding to no heat loss from the reservoir would
be somewhat higher than this, however. It is interesting to note that
an isentropic compression of the same value, with no heat losses, would
yield a final reservoir temperature T, of only 1180 R.
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APPENDIX F

PROBLEMS IN CONNECTION WITH CALIBRATING

THE HYPERSONIC GUN TUNNEL -

Static-Pressure Measurements -

The static pressure system is considered to respond exponentislly
to the true static pressure which is in turn assumed to be proportional
to the pitot pressure. In this event we may write

— = = (Ko, - P) (F1)

where T is the time constant of the system, and X 1s the ratio of
static to pitot pressure. By integration of equation (F1), the constants
7 and X stand in the linear relstion

t t
[ pdt [ pydt
o _ o :

———=K| | -7 (F2)
p(t) - p(o) p(t) - p(o)

The ebove integrals of pressure are evaluated as a function of time from
the measured static-pressure snd pitot-pressure data. Then the values

of X and v are determined by the linear regression giving the least
mean squares fit. It was found (see fig. 13) that a time constant

T = 0.060 second and & ratio of static to pitot pressure X = 8,06x1072
£it the pressure data shown in figures 5(c) and 5(d) within a few percent
over the entire interval of flow time from O to 0.3 second. Accordingly,
it is indicated that the value of p/H, corrécted for time lag in the

static pressure messuring system, is 5.32><10'6 over this time interval.
Condensed: Phase Impurities

It was observed during the course of eXperimenting with the hyper-
sonic gun tunnel that the condensed phase impurities are absent from the
shadow of models in the air stream. This observation suggests that the
energy carried to.a model by these impurities mey very in proportion to
the frontal area of the model. In this event, the heat transfer should



NACA RM A55E02 Sonmrom—c» 59

tend to vary directly as the Reynolds number for the case of circulsar
cylinders in the same stream. However, according to both theory and
experiment (see fig. 9) Heat transfer varies like the square root of
Reynolds number. There is added reason, then, to believe that condensed
phase impurities have but a small influence on the initisl hest-transfer
rates presented in this psper.
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APPENDIX G

EFFECTS OF DISSOCIATION ON HEAT TRANSFER TO

A CYLINDRICAL STAGNATION REGION

Temperatures in the disturbed flow about a vehiecle in hypersonie
flight may be sufficiently large (of the order of 5000° R or greater) to
dissoclate air molecules into atoms. Rates of dissociation are not pres-
ently known with any degree of certainty, however, and it is therefore
difficult to estimate whether the extent of dissociation will be negli-
gible, partial, or in complete equilibrium in the time scale of flow
about hypersonic vehicles of practical size. Since equilibrium disso-
ciation is a limiting case, it is this situstion which wiIl be treated

here.

To a first spproximation then, the temperature ratio across the
shock wave 1s determined by the relation

he =
8 5 B

(G1)

since the specific enthalpy, hg, is consldered e known function of tem-
perature for a given pressure. If the free-stream stetlc pressure is
neglected, the momentum equation becomes '

g + psusz = p U2 (a2)

o0

and substituting from the continuity relation

pu = pU (a3)

s°s 0 00
and the equation of state

p = pR(T)T (Gh)




NACA RM A5S5E02 ‘U 61

the ratio of densitles across the shock wave becomes

S 1 [1_R(T) (a5)
pg 2 2 U2
Then if 7, is defined by®
P 7, -1
- - R - S (G6)
Py 7g +1 : .
the pressure ratio across the shock wave is
P 2y M2 .
= —— 2 (a7)

_8
pm 7s + 1

From the equation of state (G4) and equation (G6), it follows that an
equivalent expression is

P g +1Tg R(Tg)

P 7, 1R, ) <

where the ratio. of specific gas constants R(Tg)/ R(T.) is also considered
a known function of temperature for a given pressure. Equations (GT)

and (G8) are solved for 7g 5 then the rate of heat transfer to a cylindri-
cal stagnation region may be calculated from equation (33). Note that it
is unnecessary ‘o determine 7g Wwith great precision, since it is the
fourth root of (75 - 1) which appears in equation (33).

The above calculations were made for a cylindrical stagnation region
for the case of equilibrium dissociastion at one atmosphere pressure and

IThis definition is used merely for convenlence, so that the con-
stants given in the heat-transfer solution (eg. (33)) do not change in
form.

SSMMERTTIAL
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free-gtream tempersture, Ty, equal Loo° R.Z The enthalpy and specific
gas constants were taken from dats tabulated by Kreiger and White

(ref. 18) and the transport properties were gpproximated by simple
kinetic theory relations for a gas composed of hard spherical particles
(see ref. 19). The quentitative accuracy of this approximation is not ~
high, of course, and the analysis cannot be expected to yield more than
the order of magnitude for dissoclatlon effeéts. The results of these
calculations are presented in figure 12 both for flow in a state of
equilibrium dissociation and for flow in which dissociationsl energy is
not excited. The calculated rates of heat transfer are higher when disso=-
ciation occurs but not in proportion to the large order of magnitude
increase in transport properties. The explenation for this result is
that the increase in transport properties 1s largely compensated for by~
B reduction in temperature level as the random kinetic energy is absorbed
in the dilssocistlionel energy modes. In fact, as a result of this com-
pensation, Beckwith concludes on the basis of a boundary-layer snalysis
(ref. 20), that the heat-transfer rate per unit ares at the stagnation
point is only slightly affected by equilibrium dissociation. A close
comparigson of the results of this paper with Beckwith's results would
not seem warranted until the properties of dissociated alr are more
accurately known.

2These conditions correspond roughly to upper atmosphere flight con-
ditions (i.e., about 100,000 to 150,000 feet altitude st Mach numbers from
10 to 20). At lower altitudes, higher pressures will be encountered
behind the shock wave and the equilibrium dissocistion will be less. It
should be remembereéd, of course, that equilibrium dissociation may not
occur in actusl flight if the rate process is slow enough (see, e.g.,
ref. 21 for a discussion of dissociation rates).

NN
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Figure 1.~ Schemotic diagram of the hypersonic gun funnel.
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 Retaining yake

Strain goge elements
housing

..... iy Insert to gun
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A-199013, 1
(a) Reservoir pressure gage, gage insert, and yoke.
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(b) Pitot pressure probe and capacitance pressure céll.

Figure 4.— Calibration equipment for the 20-mm hypersonic gun funnel
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Figure 4— Concluded.
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(b} Reservoir pressure, O-0.8 seconds, taken with high-sensitivity gage.

Figure 5~ Reservoir, pitot and static pressure in the hypersonic
gun tunnel as a function of time.
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(a) Schlieren photographs of the spark discharge
disturbance sweeping through the test region.
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Figure 6.~ Free-stream velocity as a function of time
(At-time interval between spark discharge and Schiieren
exposure, t-time of flow measured from nozzle valve
opening).
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(b) .020-inch-diameter thermocouple cylinder mounted
in the test section at 45° yaw.

Figure 7.- Hear-transfer models.
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